The Structure of Adrenodoxin Reductase of Mitochondrial P450 Systems: Electron Transfer for Steroid Biosynthesis

Gabriele A. Ziegler¹, Clemens Vonrhein¹, Israel Hanukoglu² and Georg E. Schulz¹*

¹Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität
Albertstrasse 21
D-79104 Freiburg im Breisgau
Germany

²E. Kätzir Biotechnology Program, Research Institute, College of Judea and Samaria Ariel 44837, Israel

Adrenodoxin reductase is a monomeric 51 kDa flavoenzyme that is involved in the biosynthesis of all steroid hormones. The structure of the native bovine enzyme was determined at 2.8 Å resolution, and the structure of the respective recombinant enzyme at 1.7 Å resolution. Adrenodoxin reductase receives a two-electron package from NADPH and converts it to two single electrons that are transferred via adrenodoxin to all mitochondrial cytochromes P450. The structure suggests how the observed flavin semiquinone is stabilized. A striking feature is the asymmetric charge distribution, which most likely controls the approach of the electron carrier adrenodoxin. A model for the interaction is proposed. Adrenodoxin reductase shows clear sequence homology to half a dozen proteins identified in genome analysis projects, but neither sequence nor structural homology to established, functionally related electron transferases. Yet, the structure revealed a relationship to the disulfide oxidoreductases, permitting the assignment of the NADP-binding site.

Introduction

Adrenodoxin reductase (AdR, NADPH:adrenal ferrodoxin oxidoreductase, EC 1.18.1.2) is an FAD-containing enzyme that represents the first component in the mitochondrial cytochrome P450 electron transfer systems (Omura et al., 1966; Lambeth et al., 1982; Hanukoglu, 1992). These systems catalyze hydroxylations converting cholesterol to pregnenolone and then to all steroid hormones as well as hydroxylations in the biosynthesis of bile acids and vitamin D (Bernhardt, 1996). AdR receives electrons from NADPH and transfers them via the [2Fe-2S]-ferredoxin-type carrier adrenodoxin (Müller et al., 1998) to at least six different cytochromes P450 (Hanukoglu, 1992).

In humans there is only one AdR, which is encoded by a nuclear gene and expressed in all human tissues examined. AdR is most abundant in the steroid-producing cells of the adrenal cortex, the ovary and the testis (Hanukoglu, 1992). All proteins of the P450 system are located at the matrix side of the inner mitochondrial membrane. AdR and adrenodoxin are easily solubilized proteins, whereas the cytochromes P450 are hydrophobic (Hanukoglu, 1992; Bernhardt, 1996). Immunocytochemical studies show, however, that both AdR and adrenodoxin are associated with the mitochondrial membrane, most likely by ionic interactions (Hanukoglu, 1992; Ishimura & Fujita, 1997).

Functionally, AdR has a stabilized semiquinone state (Kobayashi et al., 1995) and belongs to a large group of electron transferases that interchange two-electron packages, which are received from or transmitted to NAD(P)H, against single electrons (Massey, 1995). This group includes putidaredoxin reductase (Aoki et al., 1998) and NADPH-cytochrome P450 reductase (Wang et al., 1997) supplying bacterial and microsomal P450 systems (Bernhardt, 1996), respectively, as well as the family of the plant-type ferredoxin-NADP⁺ reductases (Karplus et al., 1991). No sequence hom-
ology with these functionally related transferases could be detected. However, a relationship with disulfide oxidoreductases like glutathione reductase had been suggested based on a common sequence fingerprint for NADP-binding (Hanukoglu & Gutfinger, 1989). There is a growing number of proteins identified by genome analyses that are closely related to AdR. Presently, we find seven genes from Arabidopsis, yeast and mycobacteria with amino acid sequence identities in the range of 35% to 40% in the data banks, constituting an AdR family. Within mammalian AdR the identities are above 85%.

Several crystal species of AdR (Hiwatashi et al., 1976; Nonaka et al., 1985; Kuban et al., 1993) as well as crystals of a cross-linked complex between AdR and adrenodoxin (Lapko et al., 1997) have been reported, yet the AdR structure remained unknown. Here we present this structure, discuss the electron transfer mechanism, and use the relationship with the disulfide oxidoreductases to predict the NADP-binding site. Based on the known structures of adrenodoxin (Müller et al., 1998) and its homologue putidaredoxin (Pochapsky et al., 1994), we propose a geometry for the interaction of AdR with adrenodoxin.

Results and Discussion

Structure determination

AdR was initially isolated from bovine adrenals and crystallized (Vonrhein et al., 1999), but there were not enough suitable crystals for solving the structure. Therefore, the corresponding cDNA was overexpressed in Escherichia coli and the recombinant AdR purified to homogeneity (Vonrhein et al., 1999). Using the hanging drop vapor diffusion method, three interrelated crystal forms A, A’ and A” were obtained. The structure was solved in crystal form A” using a combination of multiwavelength anomalous dispersion (MAD) and isomorphous replacement with a mercury heavy-atom derivative (Table 1).

The resulting electron density map was readily interpretable. The model was built and refined at 2.4 Å resolution. Subsequently, it was transferred to crystal form A’ and refined at 1.7 Å resolution. This model is reported here. The model was then further transferred to crystal form A containing the native enzyme isolated from adrenals and refined at 2.8 Å resolution (Table 2).

Chain fold topology

The enzyme consists of two distinct domains (Figure 1), the chain topologies of which are sketched in Figure 2. The topologies resemble each other; both consist of central parallel β-sheets surrounded by α-helices, the second domain contains an additional three-stranded antiparallel β-sheet. The first domain binds FAD in the usual arrangement across the C-terminal ends of the parallel β-strands at a Rossmann fold (Schulz, 1992). The second domain is inserted between strands β4 and β18 of the FAD-binding domain, which corresponds to a characteristic feature of the disulfide oxidoreductases like glutathione reductase (GR;

Table 1. Data collection and phasing statistics

<table>
<thead>
<tr>
<th>Data set</th>
<th>A native</th>
<th>A’ recombinant</th>
<th>A” recombinant</th>
<th>MMA</th>
<th>λ1 edge</th>
<th>λ2 peak</th>
<th>λ3 remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (Å)</td>
<td>0.93</td>
<td>0.91</td>
<td>1.54</td>
<td>0.9057</td>
<td>1.0800</td>
<td>1.0046</td>
<td>0.9918</td>
</tr>
<tr>
<td>X-ray source</td>
<td>X11</td>
<td>X11</td>
<td>Cu Kα</td>
<td>X11</td>
<td>X31</td>
<td>X31</td>
<td>X31</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>32-2.8</td>
<td>34-1.7</td>
<td>29-2.4</td>
<td>53-2.3</td>
<td>41-2.5</td>
<td>40-2.6</td>
<td>40-2.5</td>
</tr>
<tr>
<td>Unique</td>
<td>50,561</td>
<td>56,738</td>
<td>17,479</td>
<td>25,010</td>
<td>19,580</td>
<td>17,412</td>
<td>14,245</td>
</tr>
<tr>
<td>Reflections</td>
<td>57.6</td>
<td>62.0</td>
<td>85.7</td>
<td>94.4</td>
<td>106.5</td>
<td>83.0</td>
<td>106.8</td>
</tr>
<tr>
<td>Redundancy</td>
<td>4.0</td>
<td>4.7</td>
<td>2.4</td>
<td>4.1</td>
<td>3.6</td>
<td>3.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>87 (62)</td>
<td>93 (76)</td>
<td>74 (37)</td>
<td>99 (95)</td>
<td>100 (100)</td>
<td>100 (97)</td>
<td>73 (40)</td>
</tr>
<tr>
<td>Rsym (%)<sup><sup>c</sup></sup></td>
<td>20.6 (37)</td>
<td>4.9 (24)</td>
<td>4.8 (13)</td>
<td>4.3 (15)</td>
<td>5.9 (21)</td>
<td>5.2 (20)</td>
<td>5.5 (21)</td>
</tr>
<tr>
<td>λ<sup><sup>d</sup></sup></td>
<td>2.1 (1.8)</td>
<td>10.8 (3.1)</td>
<td>11.0 (4.9)</td>
<td>9.0 (4.9)</td>
<td>8.2 (3.5)</td>
<td>8.5 (3.8)</td>
<td>11.4 (3.1)</td>
</tr>
<tr>
<td>Phasing power<sup><sup>e</sup></sup></td>
<td>1.6 (1.2)</td>
<td>1.2 (1.2)</td>
<td>1.6 (1.0)</td>
<td>1.2 (0.6)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anomalous</td>
<td>2.6</td>
<td>1.9</td>
<td>2.6</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scattering factor f (e-)<sup><sup<g></td>
<td>-</td>
<td>-</td>
<td>-17.3</td>
<td>-12.1</td>
<td>-10.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scattering factor f’<sup><sup<g></td>
<td>-</td>
<td>-</td>
<td>3.9</td>
<td>10.0</td>
<td>8.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^{^a} All crystals belong to space group P2₁. The unit cell parameters are: form A, a = 85.7 Å, b = 63.1 Å, c = 219.0 Å, β = 94.4°; form A’, a = 60.8 Å, b = 62.5 Å, c = 78.4 Å, β = 106.8°; form A”, a = 57.8 Å, b = 60.2 Å, c = 83.0 Å, β = 107.1°; derivative MMA, a = 57.6 Å, b = 62.0 Å, c = 82.1 Å, β = 106.5°; MAD data sets λ1, λ2 and λ3, a = 57.7 Å, b = 62.0 Å, c = 83.0 Å, β = 107.0°. Crystal form A is related to A’ and A”. The unit cell of form A is four times larger than those of the others (Vonrhein et al., 1999). The mercury derivative was produced by soaking with 0.05 mM methylmercury acetate in buffer C with 12% (v/v) PEG-8000 and 10% (v/v) glycerol for about ten hours at 20 °C.

^{^b} Beam lines X11 and X31 are at the EMBL-outstation (Hamburg). All data were collected at 100 K, except for data set A that was collected at 300 K.

^{^c} The last shell values are given in parentheses.

^{^d} R_{sym} = Σ|I_i - _λI_i| / ΣI_i.

^{^e} Using program SHARP. The phasing power is the heavy-atom signal divided by the error.

^{^f} Data for the acetic reflections. The values for the centrics are given in parentheses.

^{^g} As derived from a fluorescence scan. After refinement the values changed on average by 1.8 e-.
Schulz et al., 1978). The relationship was confirmed by a general search for similar structures in the Protein Data Bank using distance matrix techniques (Holm & Sander, 1993), that retrieved the disulfide oxidoreductase NADH-peroxidase (Stehle et al., 1991) as the closest match.

In GR the two domains bind FAD and NADP at corresponding positions of closely similar domain topologies giving rise to the proposal that they originated from a gene duplication (Schulz, 1980). This may also apply for AdR, where however, the relationship is more distant because the FAD-domain of AdR lacks the characteristic antiparallel β-sheet (strands β11, β12 and β13 of the “NADP”-domain; Figure 2) that occurs in both dinucleotide-binding domains of GR.

Functionally, AdR is a close relative of the plant ferredoxin-NADP+ reductase (Karplus et al., 1991), because both enzymes use NADP, FAD and an iron-sulfur single-electron carrier protein. Moreover, the carriers are homologous (Müller et al., 1998) and a blue semiquinone is stabilized in both reactions (Kobayashi et al., 1995; Massey, 1995). A structural relationship was therefore expected. A comparison with AdR shows clearly, however, that the chain topologies are different, which applies also for the other structurally known electron transferases (Correll et al., 1992; Lu et al., 1994; Nishida et al., 1995; Wang et al., 1997; Ingelman et al., 1997) all of which have the ferredoxin-NADP+ reductase fold. AdR is therefore an outlier among the single electron transferases that has converged to a similar function during evolution.

Table 2. Refinement statistics

<table>
<thead>
<tr>
<th>Crystal form</th>
<th>A</th>
<th>A’</th>
<th>A*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution range (Å)</td>
<td>20.2-8</td>
<td>18.1-7</td>
<td>29.2-4</td>
</tr>
<tr>
<td>Number of protein atoms*</td>
<td>14,228</td>
<td>3557</td>
<td>3557</td>
</tr>
<tr>
<td>Number of solvent molecules</td>
<td>0</td>
<td>587</td>
<td>91</td>
</tr>
<tr>
<td>R-factor (%)</td>
<td>27.9</td>
<td>18.8</td>
<td>20.3</td>
</tr>
<tr>
<td>R-free (%)</td>
<td>31.2</td>
<td>22.3</td>
<td>26.3</td>
</tr>
<tr>
<td>rmsd bond lengths (Å)</td>
<td>0.010</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>rmsd bond angles (°)</td>
<td>2.3</td>
<td>2.3</td>
<td>2.7</td>
</tr>
<tr>
<td>Average b-factor FAD-domain (Å²)</td>
<td>18</td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td>Average b-factor “NADP”-domain (Å²)</td>
<td>31</td>
<td>28</td>
<td>52</td>
</tr>
<tr>
<td>rmsd of B-factors along bonds (Å²)</td>
<td>2.5</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>rmsd of B-factors along angles (Å²)</td>
<td>3.8</td>
<td>2.7</td>
<td>2.9</td>
</tr>
</tbody>
</table>

* The enzyme consists of 460 amino acid residues and FAD with an M_r of 51,079. The N-terminal residues are not visible.

b R-factor = Σ||F_{obs}|| - k|F_{calc}||/Σ|F_{obs}||, R_free is the R-factor for a set of 5% randomly chosen reflections that are not included in the refinement.

Figure 1. Stereo view of the AdR chain fold. The termini and some z-helices are labeled. The prosthetic group FAD (yellow) and the subdivision into FAD-domain (red) and “NADP”-domain (blue) are shown.

FAD-binding site

FAD is very well defined in the electron density map (Figure 3). Its conformation is virtually identical with that of FAD in the disulfide oxidoreductases, FAD superpositions resulted in rms deviations around 0.6 Å. The two negative charges of the phosphate diesters are compensated by the dipole moment of helix z1, and via water by Arg124 in helix z5. The ribose is tightly bound to Glu38 at the carboxy-terminal end of strand β2, as commonly observed with dinucleotides (Schulz, 1992).
FAD binds in an elongated conformation with the isoalloxazine portion pointing towards the "NADP"-domain and the adenine portion buried in the FAD-domain. The si-face of the isoalloxazine is covered by the polypeptide chain, whereas the re-face is solvent-exposed, similar to the FAD-binding mode in the disulfide oxidoreductases. This contrasts with the FAD-binding geometry of the ferredoxin-NADP⁺ reductase family, where the si-face is solvent-exposed (Karplus et al., 1991; Wang et al., 1997; Ingelman et al., 1997).

The isoalloxazine of AdR, however, is less tightly packed into the polypeptide than in the disulfide oxidoreductases. Its O2 atom is stabilized by a hydrogen bond to Ile376-N (Figure 3), and its O4 and N5 atoms are stabilized through hydrogen bonds to a water molecule that is fixed by the side-chains of His55 and Asp159. With His55 as secondary contact, this water molecule can easily protonate the N5 atom and thus stabilize the intermediate semiquinone as the observed blue neutral radical (Kobayashi et al., 1995).

Figure 2. Sketch of the AdR chain fold topology using squares for β-strands and circles for α-helices. Double lines mark reverse directions (view onto the N terminus of the element). Triple vertical lines indicate hydrogen bonding. Four short antiparallel β-strands and five short 3₁₀-helices are omitted for clarity. The two central parts that usually define the binding sites of the dinucleotides are colored. In glutathione reductase the equivalent parts bind FAD and NADP, which prompted us to name the insert "NADP"-domain.

Structure comparison with thioredoxin reductase

When separating the AdR chain into the FAD and "NADP"-domains, a general comparison with the Protein Data Bank (Holm & Sander, 1993) results in best fits with the two thioredoxin

Figure 3. FAD as bound to AdR together with the final (2mFₒ − DFᵣ) map contoured at 2.0 σ in crystal form A’ at 1.7 Å resolution. Hydrogen bonds are given with their lengths (dotted lines). The Cα atoms of the polypeptide fragments are in black. The residue at the bottom is V82.
reductase (TrR) domains (Waksmann et al., 1994; Dai et al., 1996; Figure 4). AdR and TrR differ strongly with respect to the domain arrangement; the NADP-domains show a rotational deviation of 66° if the FAD-domains are superimposed. The observed arrangement of TrR, however, has to change during catalysis where the NADP-domain presumably runs through an AdR-like (i.e. GR-like) position (Waksmann et al., 1994). The domain-by-domain superposition of TrR and AdR is illustrated in Figure 4. AdR contains three additional α-helices (α14, α15 and α16) at the C terminus and two additional α-helices in the “NADP”-domain (α5 and α7) that together strengthen the domain interface appreciably. Two further inserted helices in the “NADP”-domain of AdR (α9, α10) contain the two arginine residues essential for electron transfer (see below).

Putative NADP-binding site

A chain fold comparison (Holm & Sander, 1993) between the complete AdR and the disulfide oxidoreductases yielded flavocytochrome c sulfide dehydrogenase (Chen et al., 1994) and GR as the second best fits after NADH-peroxidase (Stehle et al., 1991) as the best. We decided to focus on GR because it uses NADP similar to AdR and observed a good fit. The putative NADP-binding site of AdR agrees with the sequence fingerprint (Hanukoglu & Gutfinger, 1989) and with NMR data (Miura & Ishikawa, 1994), and it gives rise to a reasonable interaction geometry between the nicotinamide and isovaloxazin moieties of the ligands (Figure 5). One may speculate that the required interaction between NADP and FAD has conserved the central β-sheets in their relative arrangement during evolution despite the large changes in other parts.

Proposed interactions with adrenodoxin

There is a striking charge segregation on the AdR surface (Figure 6), rendering the cleft between the FAD and the NADP-domains almost completely basic, while the opposite side of the molecule is predominantly acidic. The charges are balanced, because the isoelectric point ranges around 7 as determined by isoelectric focussing. The electric field of AdR most likely steers the approach of adrenodoxin (Mr = 14,222), which is dipolar itself with negative charges near its iron-sulfur cluster (Müller et al., 1998). This agrees with the observed ionic strength effects (Lambeth et al., 1979). Moreover, these asymmetries resemble those of the cytochromes P450 (Hasemann et al., 1995), suggesting that all steroidogenic electron transfers in mitochondria, like many other electron transfers, are mediated by electrostatic interactions (Lambeth et al., 1979; Hanukoglu et al., 1981; Hasemann et al., 1995).

Mutagenesis experiments on AdR revealed that residues Arg240 and Arg244 (bovine numbering, marked in Figure 6) are important for the association with adrenodoxin (Vickery, 1997). These residues are located at a highly basic patch at the edge of the cleft. Corresponding mutagenesis studies
with the carrier showed that residues Asp76 and Asp79 of adrenodoxin are crucial for the interaction, and it has been proposed that these aspartate residues contact the two arginine residues of the reductase (Vickery, 1997). Furthermore, the complex could be cross-linked between Lys66 of adrenodoxin and Glu4 of AdR (Hara & Miyata, 1991). It was also shown that the C terminus of adrenodoxin (20 residues beyond position 108) is rather mobile but important for binding to the reductase (Uhlmann et al., 1994). The location of residue 108 can be derived from the structure of C-terminally truncated adrenodoxin (Müller et al., 1998). The homologous structure of putidaredoxin (Pochapski et al., 1994) shows four additional C-terminal residues. Both positions are indicated in Figure 6, together with a groove of AdR that could accommodate the C-terminal chain. Based on these structural restraints we manually docked adrenodoxin at the basic cleft of AdR. The resulting electrostatic interactions at the interface were favorable.

Given this fit, the [2Fe-2S] cluster of adrenodoxin is at a distance of 16 Å from the center of the isoalloxazine of AdR, suggesting the electron transfer pathway shown in Figure 7. A similar long-range electron transfer occurs in cytochrome c oxidase over a 19 Å distance through 14 covalent and two hydrogen bonds (Gray & Winkler, 1996). Even if we dispense with the above-mentioned docking restraints, the geometries of AdR and adrenodoxin prohibit a reduction of the electron transfer distance below 11 Å in any relative orientation. This distance is much larger than the observed distance in phthalate dioxygenase reductase (Correll et al., 1992) that belongs to the ferredoxin NADP+ reductase family and thus to a structurally quite different group of proteins.

Surprisingly, the fit between AdR and adrenodoxin is not disturbed by NADP when bound, as proposed in Figure 5. Moreover, the nicotinamide moiety of bound NADP fills the cavity completely at the re-side of the isoalloxazine, which probably contains water in the binary complex. From a structural point of view the electron transfer from AdR to adrenodoxin may therefore occur in the presence of NADPH or NADP⁺, which is consistent with NMR studies (Miura & Ishikawa, 1994) and had been suggested by Kobayashi et al. (1995).

The proposed complex neglects a conceivable induced-fit on adrenodoxin-binding. However, the conformational changes in AdR are most likely small because there are no detectable differences between the three crystal packings. Yet, the B-factors of the “NADP”-domain are higher than those of the FAD-domain (Table 2), indicating some leeway. We therefore expect displacements up to 1 Å upon complex formation. Similar changes have been reported for adrenodoxin when binding to AdR (Miura & Ishikawa, 1994).

Glycosylation

There are contradictory reports on whether AdR is glycosylated or not (Hiwatashi et al., 1976; Ichikawa & Hiwatashi, 1982; Suhara et al., 1982; Wartburton & Seybert, 1995; Sagara et al., 1993). As expected for a mitochondrial matrix protein, the sequence contains no N-glycosylation fingerprint. A search for putative O-glycosylation sites (Hansen et al., 1995) revealed two predicted sites at Thr314 and Thr378 and three further sites with substantial probabilities at Thr254, Thr373 and Thr381. All these residues are at the molecular surface. In a further investigation we solved the structure of crystal form A of the native bovine enzyme (Table 2). Since we used the recombinant, non-glycosylated enzyme of crystal form A’ as the starting model for the refinement, any carbohydrate should appear with positive difference
density. A thorough search, in particular at the predicted sites, failed to show any positive peak of appropriate size anywhere in two (mFo – DFo)-difference maps at 2.8 Å and at 3.5 Å resolution, indicating that, in agreement with earlier data (Wartburton & Seybert, 1995; Sagara et al., 1993), bovine AdR is not glycosylated. It should be mentioned that a carbohydrate at positions 373 or 378 would be incompatible with the adrenodoxin docking model in Figure 6.

Conclusion

Bovine AdR is an electron transferase with a striking asymmetric charge distribution controlling the approach of the asymmetrically charged electron carrier adrenodoxin. AdR is structurally and therefore most likely evolutionary related to the disulfide oxidoreductases and shows no chain fold similarity with the functionally related ferredoxin-NADP+ reductase family. No glycosylation could be detected. Modeling studies indicate that the electrons tunnel over a distance of 16 Å, possibly in the presence of NADP(H).

Materials and Methods

Over-expression, purification and crystallization

The native enzyme was isolated and purified as described (Vonrhein et al., 1999). For producing the recombinant enzyme, E. coli strain BL21(DE3) carrying a modified bovine AdR-encoding plasmid was transformed with a plasmid encoding the HSP60-chaperone system. For avoiding inclusion bodies, the temperature was lowered to 20°C after induction. AdR was isolated by ion exchange chromatography followed by an affinity chromatography using 2′5′-ADP-Sepharose (Vonrhein et al., 1999). All AdR crystals were grown with the hang-
ing drop vapor diffusion method. For crystal form A the droplet contained buffer C (50 mM sodium cacodylate (pH 6.5), 100 mM calcium acetate) with 4 mg/ml protein and 8% (w/v) PEG-8000, whereas the reservoir consisted of 12% (w/v) PEG-8000 in buffer C. Crystal forms A' and A" grew under the same conditions except that 5% (v/v) glycerol was added to the droplet (Vonrhein et al., 1999).

Crystals appeared after one day at 20°C and grew within three days to their final sizes of about 150 μm x 150 μm x 1500 μm. All crystal habits were identical. It turned out that there are only small molecular packing differences between the three forms. Form A' and A" crystals were transferred stepwise into cryoprotectant (buffer C with 12% (w/v) PEG-8000 and 20% (v/v) glycerol) and then mounted in a loop, shock-frozen in a 100 K nitrogen gas stream and kept therein.

Data collection

The data sets A, A', A" and MMA were collected using synchrotron radiation (EMBL-Hamburg) or a rotating anode (Rigaku RU200B) as specified in Table 1. They were processed with programs XDS (Kabsch, 1988), MOSFLM (Leslie, 1990) and SCALA (CCP4, 1994). The search for heavy-atom derivatives resulted in only one stable crystal modification (MMA) with axes similar to one of the native data sets, namely to crystal form A'. Since this derivative showed a strong anomalous signal it was used for MAD phasing. The MAD data were collected on beamline X31 at the synchrotron EMBL-Hamburg on an 18 cm-MAR image plate detector. Due to their natural elongated shape, the crystals could readily be b-axis parallel with the spindle axis, allowing nearly simultaneous recording of Friedel pairs. The edge (λ1 at the inflection point), peak (λ2) and remote (λ3) wavelengths were determined by a fluorescence scan (Table 1). The MAD data were processed with programs MOSFLM (Leslie, 1990) and SCALA (CCP4, 1994), using data set λ3 as the reference. Structure factors were calculated with program TRUNCATE (CCP4, 1994). Data sets A' and MMA were scaled onto data set λ3 using program SCALEIT (CCP4, 1994).

Phasing

The mercury positions (Table 1) were established with difference-Patterson maps. There were two major sites at Cys74 and Cys322 and less well occupied sites at Cys145 and Cys364. Three of the mercury atoms appeared also in an anomalous Patterson map using the peak wavelength (λ2) data set. The MAD data sets were combined with sets A' and MMA for heavy-atom refinement and phasing using the program SOLOMON (de la Fortelle & Brünger, 1996). Assuming one molecule in the asymmetric unit, a solvent content of 52% was used in solvent-flattening map of the related crystal form A'. The model was corrected and completed using the program O (Jones et al., 1991) and refined with program REFMAC (CCP4, 1994) using the bulk solvent correction of X-PLOR (Brünger, 1993). Ordered water molecules were added using ARPP (CCP4, 1994). Subsequently the model was transferred into crystal form A', and the structure was refined with REFMAC/X-PLOR/ARPP to 1.7 Å resolution.

The resulting model was then transferred to crystal form A and refined at 2.8 Å resolution in order to check for differences between the recombinant and the native enzyme. For this transfer we used the observation that the four AdR molecules in the asymmetric unit of crystal form A were only slightly displaced from an average position corresponding to a four-times smaller unit cell (Vonrhein et al., 1999). During refinement, the four AdR molecules were strongly restrained by non-crystallographic symmetry for 438 residues outside crystal contacts. The resulting displacements from the average (small unit cell) position were about 1 Å.

Protein Data Bank accession numbers

The coordinates and structure factors are deposited with the Protein Data Bank, Brookhaven, under accession number 1JC.

Acknowledgments

We thank the EMBL-team (Hamburg) for helping with synchrotron data collection. We further thank U. Heine-mann for providing the adrenodoxin coordinates prior to general release as well as T. Schwede and L. Maveyraud for discussions. This work was supported by the Deutsche Forschungsgemeinschaft under Sfb-388. G.A.Z. and C.V. contributed equally to this work.

References

Adrenodoxin Reductase

Edited by D. C. Rees

(Received 18 February 1999; received in revised form 19 April 1999; accepted 20 April 1999)