

Measurement of Immersion Freezing Nuclei in Antarctica

Karin Ardon Dryer^{1,2}, Zev Levin¹

Department of Geophysics & Planetary Sciences¹ Porter School of Environmental Studies² Tel Aviv University

Israel Association for Aerosol Research

10/02/10

Heterogeneous Freezing

Condensation freezing -

Rogers and Yau (1989)

Project objectives:

- The objective of the whole project was to investigate the background aerosol concentrations in Antarctica and their effect on solar radiation.
- Our part was to determine the immersion freezing nuclei concentrations.
- Our colleagues in Frankfurt analyzed samples of aerosols for their nucleation of ice by condensation freezing and deposition freezing.

Immersion freezing in the FRIDGE-TAU

Immersion Freezing

Calculation of the concentrations of Immersion Freezing nuclei in the air (#/L) - modified from Vali (1971):

$$K'(\theta) = \frac{1}{V} * \left[\ln(N_0) - \ln(N(\theta)) \right] * \frac{x}{y}$$

 $K'(\theta)$ – Cumulative concentration of FN in the air, active at temperature θ (#/L) V – Volume of drop (cm⁻³)

- No Total number of measured drops
- N (θ) Number of unfrozen drop at temperature θ
- x The volume of water used to remove the aerosols from the filter (L)
- y The volume of air sampled through the filter (L)

Immersion Freezing

Comparison between measurements taken on the rooftop and with balloon

CPC (>0.01 microns)

Nephelometer (>0.1 microns)

Conclusions:

- Freezing Nuclei (FN) were found to be effective from -12°C down to -27°C, with concentrations of 0.05 to 26.3 #/L, respectively.
- Higher concentrations of effective FN were found in the samples collected on the balloon as compared to those measured on the rooftop.
- More effective IN were found on days with large aerosols.
- More IN were found when the air spent a long time (> 72 hours) over the continent as compared to air mass that originated over the Ocean and spent a less time over the continent.
- Average concentrations of about 1L⁻¹ at -22°C are somewhat lower than the classical value of 1L⁻¹ at -20°C (Big and Stevenson,1969) from average measurements around the world.

Thank You

Acknowledgement:

Paul Lawson, Stratton Park Engineering Corporation

Patrick J. Sheridan Physical Scientist NOAA Earth System Research Laboratory Global Monitoring Division/GMD-1

The Virtual Institute on Aerosol-Cloud Interactions, supported by the Helmholtz-Gemeinschaft (HGF) German Israeli Foundation (GIF)