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Parameters characterizing cloud turbulence

a) Turbulent Kinetic energy: E= (<u’2+w’2>)/2

b) Dissipation rate &

~ ¢) Reynolds number Re,

d) Mixing length
e) External turbulent scale L
f) Turbulent coefficient K



~ Collisio nhﬂement fact

Df = sl

col xern” clust

P Is the enhancement factor due to the increase in relative velocity between
kern ; ’ Le s
droplets and the increase in the collision efficiency

P

s 1S the enhancement factor due to the droplet clustering.



£= 1000 e’ Re, - 0t

e=200anfs™ Re, - 2+40*

o ©

~

>

t=10cm’s™ Re, = 5107

o

o~

w

Normalized ceollision kernel

r

= & @ om LY

L]

Normalized collision kernel
& -

@

Figure 1. Mean normalized collision kernel in turbulent flow for three
cases: stratiform clouds (left panel), cumulus clouds (middle) and
cumulonimbus (right panel). Pressure is equal to 1000mb. (After Pinsky et
al, 2008)



Relative contribution of different mechanisms to the collision
rate enhancement:

Transport effect: ~20%

Clustering effect: ~20%

Collision efficiency: ~60%



Hebrew University Cloud Model (HUCM) with

spectral (bin) microphysics (Khain et al 2004, 2008)

8 types of hydrometeors:
a) water drops, b) plate crystals; c) columnar crystals;
d) dendrites; e) snow; f) graupel; g) hail; h) aerosols

Each distribution function is defined on mass grid containing 43
bins.

The minimum size corresponds to a 2 micron drop. The maximum
Size corresponds to hail of 6 cm in diameter.

Computational area: 25 km x 16 km.

Model resolution: 50 m x 50 m

Time steps range from 0.5to 5 s.



The K-epsilon theory (1.5 order closure) (Skamarock et al., 2005)
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15v Taylor microscale

u's Taylor microscale Reynolds number



Model calculates in each grid point and at each time
step:

a) dissipationrate &
~ b) Reynolds number Re,

c) Collision enhancement factor

This procedure makes it possible to investigate effects of
turbulence on precipitation formation.



Gre‘en-Oce'an ; 900, 1200 1700 Andeae et aI (2004) 4.1 km
Smoky : 5000, 10000 Andeae et al (2004) 4.1 km
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Figure 1. Fields of Re, (left), Total turbulent kinetic energy (middle) and dissipation rate (right) at
different time instances during development of smoky cloud (with turbulent collision kernel)
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c) Aerosols invigorate clouds and cloud turbulence

d) In case the turbulent kernel is used cloud turbulence is
slightly weaker than in case of gravitational kernel

e) Effects of aerosols and of turbulent kernel on cloud
turbulence are opposite. It seems that aerosol effects
are stronger.
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CONCLUSIONS

1) The turbulent structure of mixed-phase convective clouds observed in the
LBA-SMOC field experiment was simulated with the CCN concentration
varying from 200 to 10000 cm-3.

2) The simulations have been carried out using 2-D Hebrew University cloud
model with spectral (bin) microphysics (HUCM) with uniform resolution of
50 m within the computational area 25.6 x 16 km.

3) Collision kernels were calculated in each grid point and at each time step.

Cloud turbulence:

4) Turbulence in clouds turned out to be highly inhomogeneous so that
maximum values of dissipation rate and may be by order of magnitude
higher than the values averaged over the entire cloud. The elongated
zones of enhanced turbulence are located at the edges of ascending
bubbles. They represent large scale turbulent intermittency in clouds.

5) Turbulence in polluted clouds turned out to be more intense than that in
clouds developing in the clean atmosphere.



Rain drop formation:

6) The model reproduces accurately the DSD shapes in blue-ocean, green-ocean
and smoky clouds measured in situ during the LBA-SMOC field experiment, as
well as the vertical profiles of effective radius in these clouds.

7) The observed DSDs are reproduced better in simulations when the turbulent
collision kernels were used.

8) It is shown that first raindrops form when the effective radius reaches 13.5-14
um.

9) It is shown that turbulence leads to acceleration of raindrop formation by 30-
100%, which is a very significant effect. The turbulence decreases the height of
the first raindrop formation from several hundred meters to ~1 km.

Surface rain:

10)Turbulence is the one of the main mechanism causing warm rain at the
surface, especially for the CCN concentrations exceeding 700 cm-3.

11) The effect of turbulence-induced enhancement of drop collisions on the cold
precipitation is just opposite: in polluted air turbulence decreases surface rain by
about 30%-40% as compared with the cases when the gravitational kernels are
used.

12) Thus, the role of turbulent —induced collision rate enhancement is somehow
opposite to that of small aerosols playing the role of CCNSs.
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