Near-ground Hyperspectral Imaging for Urban Scale Remote Sensing of Aerosols During Nighttime

Y. Etzion, D. M. Broday, T. Kolatt, M. Shoshany

Civil & Environmental Engineering, Technion, Israel

Monitoring size-resolved concentrations of <u>ambient</u> aerosols over spatial segments *near the ground* is essential for public health risk assessment. **PM <2.5µm, urban scale**

Application: assessment & management, source apportionment, informationbased decision-making, fast response to emergency events

Size resolved concentrations of ambient aerosols span over multiple scales, having dynamic spatial and temporal variations

Size resolved concentrations of ambient aerosols span over multiple scales, having dynamic spatial and temporal variations

Local measurements

ground level stations measure size-integrated concentrations

may not represent their surroundings

Size resolved concentrations of ambient aerosols span over multiple scales, having dynamic spatial and temporal variations

Local measurements

ground level stations measure integrated concentrations

may not represent their surroundings

RS measurements

Bi-modal size distribution over vertical atmospheric columns

solar radiation \Rightarrow <u>daytime</u>, sun elevation angle, cloud cover

(Wang et al., 1996)

correlation to ground-level PM distribution (urban-scale) is highly influenced by the geo-site specific seasonality \Rightarrow mixing layer height

(Schäfer et al., 2008)

Size resolved concentrations of ambient aerosols span over multiple scales, having dynamic spatial and temporal variations

Local measurements

ground level stations measure integrated concentrations

may not represent their surroundings

RS measurements

Bi-modal size distribution over vertical atmospheric columns

solar radiation \Rightarrow <u>daytime</u>, sun elevation angle, cloud cover

(Wang et al., 1996)

(Schäfer et al., 2008)

correlation to ground-level PM distribution (urban-scale) is highly influenced by the geo-site specific seasonality \Rightarrow mixing layer height

Ground hyperspectral imaging

Hyperspectral Remote Sensing

Night-time challenge: sufficient radiation for retrieving attributes of fine PM (concentration, size distribution, composition)

Hyperspectral Remote Sensing

Night-time challenge: sufficient radiation for retrieving attributes of fine PM (concentration, size distribution, composition)

Possible solution: using radiation of nocturnal illumination

Nighttime spectral remote sensing	
Spectral range	Application
Vis- NIR (400nm- 1100nm)	Near Ground fine PM mixture up to 4km open path

Advantage of ground based camera ⇒ spatial & temporal data at high resolution grid

Hyperspectral Remote Sensing

Night-time challenge: sufficient radiation for retrieving attributes of fine PM (concentration, size distribution, composition)

Possible solution: using radiation of nocturnal illumination

Research Plan

Laboratory scale

Image well characterized aerosols

Up scaling

Develop imaging procedure for urban scale open path

Computational

Algorithms for signature analysis

Case studies

temporal dynamics

Nighttime spectral remote sensing		
Spectral range	Application	
Vis- NIR (400nm- 1100nm)	Near Ground fine PM mixture up to 4km open path	

Advantage of ground based camera ⇒ spatial & temporal data at high resolution grid

Hyperspectral Aerosol Optical Thickness Mono-modal Lognormal –Polystyrene Spheres

(2002) Mari - maritime Urb - Urban BG - background HW - highways

(2002) Mari – maritime Urb – Urban BG – background HW - highways

(2002) Mari - maritime Urb - Urban BG - background HW - highways

CCD Response to Light Sources

Lab Scale – Generated Aerosol Size Distributions

Sensor Sensitivity

Indication of larger particles

<u>Summary</u>

Hyperspectral imaging provides offers high spatiotemporal resolution and better identification of fine PM modes.

Imaging of artificial light sources was applied as a novel solution for nighttime RS of fine PM concentrations.

Feasibility and sensitivity at laboratory scale were studies – gaps remain.

Field nighttime imaging procedure was developed

Challenges of pixel selection for analysis were dealt.

Spectral depended attenuation in the presence of extreme PM concentrations was measured.

THANK YOU FOR LISTENING!

