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Goals

Goals

Final Goal

Better understand the collision probability of small
non-spherical particles in turbulent flows.

Better understand the contribution of collisions to the growth
of ice particles in clouds.

Present Goals

Study the orientation dynamics of a single particle in general
shear flows.

Study the dynamics of ensemble of orientations - p.d.f in
general shear flows.
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Goals

Collision Efficiency

Collision efficiency is determined by both:

relative velocity

orientations probability distribution

Collision Mechanism

Particle relative translational motions are induced by eddie’s
acceleration and particles’ mass difference.

Particle orientation depends on the shear.
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Goals

Assumptions

Particles are smaller than Kolmogorov microscale.

The flow near a particle and its near neighbors may be
approximated as a linear shear flow.

This linear flow persists for a time comparable to
Kolmogorov time scale.

Mean collision efficiency may be obtained from
averaging of many realizations.

τ=Kolmogorov time scale

η = micro scale
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Jeffery Equation

Outline

Outline

Study the evolution of the orientations of a single particle in a
linear shear flow and its relation to the particle shape (aspect
ratio).

Find attractors: fixed points and limit cycles.

Find characteristic time scale to reach the attractors and
compare them with Kolmogorov time scale.

Study the dynamics of the orientation p.d.f of ensemble of
initial orientations.



Orientations of prolate ellipsoids in general shear flow

Jeffery Equation

Setup

orientation:
Polar Representation:
θ = polar angle ;
φ = azimutal angle.

Cartezian Representation:
X = (x , y , z) a point
on the unit sphere.
x2 + y 2 + z2 = 1

Aspect ratio:
β = b/a
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Jeffery Equation

Rotation Equation of Motion

Equation of Motion: Low Reynolds Number

d

dt
(I · ω) = −µΩ · ω + µN (1)

Small inertia: Quasi Steady equation of motion:

ω = Ω−1N (2)

The torque N acting on a particle, embedded in a flow field U is

N = Ω · T̃ · (♦̃ ×U) (3)

=⇒ ω = T̃ · (♦̃ ×U) (4)
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Jeffery Equation

Linear Flow

Linear Shear Flow

Ui ≡ dXi/dt = SijXj ; Sii = 0 (5)

Decomposing the shear tensor

Sij = Eij + Rij

Eij = 1
2

[
Sij + Sji

]
Rik = 1

2

[
Sik − Ski

]
= εijkξj

(6)

E − Strain Tensor − Deformation

R − Rotation Tensor − RijXj = ω × X
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Stationary solutions of Jeffery Equation

Jeffery Equation: From eqs. (4) & (5) [small inertia]

γ
dxi

dt
= Jijxj − xi (x ,Ex) ≡ γui (x)

Jij= Eij + γRij

γ =
1 + β2

1− β2
; 1 < γ <∞

Jeffery Equation preserves length: ||x || = 1 d
dt ||x || = 0
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Stationary solutions of Jeffery Equation

Stationary solutions

periodic solution
Limit Cycle Fixed Point
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Stationary solutions of Jeffery Equation

Three real eigenvalues

Real eigenvalue - fix point

Let X 1 be a normalized eigenvector of J corresponding to a real
eigenvalue λ1 then X 1 is a fixed point.

Jeffery Equation

γ
dx

dt
= J · x − x(x ,Ex)

J · x1 = λ1x1

x1(x1,Ex1) = x1(x1, Jx1) = λ1x1

r.h.s. vanishes =⇒ X 1 is a fixed point.



Orientations of prolate ellipsoids in general shear flow

Stationary solutions of Jeffery Equation

Three real eigenvalues

Stability of fixed points - real eigenvalues return

Perturbation of Jeffery Equation

U1

x1X'

εY

X 1 - a fixed point; U1 subspace; U1⊥X 1

X ′ - a small deviation from X 1:

x ′ = x1 + εy + ...

y ∈ U1
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Stationary solutions of Jeffery Equation

Three real eigenvalues

Perturbed Jeffery Equation

γ
dy

dt
= Ly − λJ

1y

Ly = (PU1 · J)y = J · y − x1(x1, J · y)

L : U1 → U1 is a 2-D operator

The two eigenvalues of L are the remaining two
eigenvalues of J: λL

1,2 = λJ
2,3

X 1 stable⇐⇒ λJ
1 > λJ

2, λ
J
3

L is non-normal LLt 6= LtL
Eigenvectors are not orthogonal.
Non-monotonic convergence is possible.

return
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Stationary solutions of Jeffery Equation

Three real eigenvalues

Non-normal growth

y(t) = a(t) · u + b(t) · v

a(t) = a(0) exp (
λJ

2−λJ
1

γ · t); b(t) = b(0) exp (
λJ

3−λJ
1

γ · t)

Suppose λJ
2 << λJ

3 Suppose (u, v) 6= 0

t = 0

y(t)=a(t)*u+b(t)*v

y(t)

a(t)*u

b(t)*v

t = t2 > 0

y(t)=a(t)*u+b(t)*v

y(t)

a(t)*u

b(t)*v

t = t3 > t2

y(t)=a(t)*u+b(t)*v

y(t)

a(t)*u

b(t)*v
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Stationary solutions of Jeffery Equation

Three real eigenvalues

Example I: non-normal growth Contd.

components - parallel and
perpendicular to the
stable fixed point x3

a1, a2 - perpendicular
a3 - parallel

non-normal growth

S =

0@−1 3. 0
0 0.4 0
0 0 0.6

1A
τc
τ

= γ

τ(λJ
max−λJ

int )
≈ 4.5

τ = (EijEij)
−1/2 = 0.41

return fp-I
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Stationary solutions of Jeffery Equation

Three real eigenvalues

Example II: monotonic convergence Contd.

components - parallel and
perpendicular to the
stable fixed point x3

a1, a2 - perpendicular
a3 - parallel

monotonic convergence

S =

0@−0.4 −0.4 0
0 −0.6 0
0 0 1

1A
τc
τ

= γ

τ(λJ
max−λJ

int )
≈ 0.88

τ = (EijEij)
−1/2 = 0.79

return fp-II
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Stationary solutions of Jeffery Equation

complex eigenvalues

Complex eigenvalues: goals

Find the stable stationary solutions: fixed points and
limit cycles.
Characterize the different modes to approach the
stationary solutions.
Find characteristic time scales.

fixed point
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limit cycle
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Stationary solutions of Jeffery Equation

complex eigenvalues

complex eigenvalues - Stationary solutions limit-cycle

Fixed points and limit cycle

The eigenvalues of J

λJ
1 =α

λJ
2,3 =− α

2
± iω

Stationary Solutions

α > 0 - stable fixed point; unstable limit cycle

α < 0 - stable limit cycle; unstable fixed point

α = 0 - no attractor; periodic Jeffery Orbits
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Stationary solutions of Jeffery Equation

complex eigenvalues

complex eigenvalues - Limit cycles

Stability of the limit cycle

Γ is stable iff α < 0.

The period of rotation along Γ is T = 2πγ/ω.

If min
x0∈Γ

(x0,Ex0) > α the convergence to Γ is monotonic.

Otherwise periodic growth and decay occur.

The period average time scale of convergence is
τc = 2

3
γ
|α|
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Stationary solutions of Jeffery Equation

complex eigenvalues

Example IV - convergence to a limit cycle - Contd. fp IVa fp IVb

monotonic
β = 0.7, γ = 2.92,
τ = 0.79, τc/τ ≈ 2.5,
T/τ ≈ 43.

S =

0@0.4 0.4 0
0. 0.6 0
0 0 −1

1A

non-monotonic
β = 0.7, γ = 2.92,
τ = 0.41 τc/τ ≈ 7.9,
T/τ ≈ 11.

S =

0@1 3 0
0 −0.4 0
0 0 −0.6
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orientation p.d.f

Orientation probability distribution function

The position of particles on the unit sphere is described by the unit vector x:

x =

0@sin θ cosφ
sin θ sinφ

cos θ

1A
The probability of finding a particle in the interval [θ, θ + dθ]× [φ, φ+ dφ] at
time t is given by

f (θ, φ, t) sin θdθdφ

f satisfies the normalization condition:Z π

0

Z π

−π
f (θ, φ, t) sin θdθdφ = 1

f satisfies the Fokker-Planck equation

∂f

∂t
+∇ · (ẋf ) = 0

f |t=0 = f0

Jeffery eq.
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orientation p.d.f

Fixed point: non-monotonic; example I; β = 0.2 example I

(a) t=0.5 (b) t=1

(c) t=2 (d) t=5
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orientation p.d.f

Fixed point: monotonic; example II; β = 0.2 example II

(e) t=0.5 (f) t=1

(g) t=2 (h) t=5
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orientation p.d.f

Limit cycle: monotonic; example IVa; β = 0.7 example IV

(i) t=1 (j) t=3

(k) t=5 (l) t=10
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orientation p.d.f

Limit cycle: non-monotonic; example IVb; β = 0.7 example IV

(m) t=1 (n) t=3

(o) t=5 (p) t=10



Orientations of prolate ellipsoids in general shear flow

orientation p.d.f

Summary

The equation of motion of a single particle posseses three
kinds of stationary solutions.

For a given particle and flow field one of the following three
cases may be realized:

1 Three fixed points - only one is stable.
2 One fixed points and one limit cycle - only one is stable.
3 Periodic solutions.

The “choice” between the three cases is determined by the
flow and the aspect ratio - as the particle becomes more
spherical: case 1 → case 2.

If the vorticity does not vanish convergence to a fixed point or
limit cycle may be non-monotonic due to NON-NORMAL
GROWTH.

Convergence time to a fixed point or limit cycle may be long
compared to the dissipation scale.



Orientations of prolate ellipsoids in general shear flow

orientation p.d.f

Summary Contd.

The Orientatiom p.d.f was computed numerically by solving
the Fokker-Planck Equation.

p.d.f behaviour:

1 converges to a point - stable fixed point
2 converges to a great circle - stable limit cycle
3 periodic

The convergence rate may be long compared to the
dissipation rate.

Although non-normal growth was obtained from local analysis
it is observed over almost the entire orientation space.
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orientation p.d.f

Necessary cond. for no non normal growth pert-jef

no vorticity - no non normal growth

Proposition:
a necessary condition for non normal growth is that the vorticity
does not vanish.
Proof:
Suppose R = 0, then J = E is symmetric and all the eigenvectors
are orthogonal.
=⇒ U1 = span

{
X 2,X 3

}
pert-jef

=⇒ λ
PU1E
max = λ

PU1J
max = max

{
λJ

2, λ
J
3

}
< λJ

1
return
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