# Similarity Solutions for Two-Phase Boundary-Laver Flows 

Ro'ee Orland, David Katoshevski Ben-Gurion University, Beer-Sheva, Israel

## Similarity Solutions

- Reduce number of variables
- Consider sets of coordinates with similar properties
- Blasius
- Falkner \& Skan


## We define:

- A similarity variable:
$\eta=y\left[\frac{C x^{\alpha}(1+\alpha)}{2 v x}\right]^{\frac{1}{2}}$
- A stream function:

$$
\Psi=\left(\frac{2 \downarrow C x^{\alpha+1}}{\alpha+1}\right)^{\frac{1}{2}} f(\eta)
$$

## $U=C x^{\alpha}$

$$
\begin{aligned}
& u=\frac{\partial \Psi}{\partial y}=U f^{\prime} \\
& v=-\frac{\partial \Psi}{\partial x}=-\frac{v}{x} \sqrt{\frac{\alpha+1}{2} \frac{C x^{\alpha+1}}{v}}\left(f+\frac{\alpha-1}{\alpha+1} \eta f^{\prime}\right) \\
& \quad u \frac{\partial u}{\partial x}+v \frac{\partial v}{\partial y}=U \frac{\partial U}{\partial x}+v \frac{\partial^{2} u}{\partial y^{2}}
\end{aligned}
$$

$$
f^{\prime \prime \prime}+f f^{\prime \prime}+\beta\left[1-\left(f^{\prime}\right)^{2}\right]=0, \beta=\frac{2 \alpha}{1+\alpha}
$$

- BC:
- No-Slip : $f^{\prime}(y=0)=f^{\prime}(\eta=0)=0$
- Degree of Suction: $f(\eta=0)=f_{0}$
- Velocity outside the BL (no over/under-shoot): $f^{\prime}(\eta \rightarrow \infty)=1, f\left(\eta<\eta_{\infty}\right)<1$
- For $\beta<-0.1984, \underline{3 \text { rd }} \mathrm{BC}$ requires suction $\left(f_{0}>0\right)$
- Solution usually given for $0 \leq \eta \leq 5$
- But what if $\alpha<-1(\equiv \beta>2)$ ?

■ Banks \& Brodie: $\mathrm{C}<0$, flow in direction of decreasing $x$

■ But do we have to fiddle around with perspective and flow direction?

■ Problems with non-linear nature

# Stewartson, 1954 (My all-time favorite paper) 

## We note that if $\beta>2$ there are in fact no solutions which

lead to real values of $u$ and $v$ so that this range need not be considered.

## Are you sure about that?

- $\eta$ would be positive, imaginary
- $f^{\prime}$ would still have to be real, increasing, so $f, f^{\prime \prime}$ would have to be negative, imaginary.


## So what about the physical properties?

$$
\begin{aligned}
& u=\frac{\partial \Psi}{\partial y}=U f^{\prime} \quad \frac{\eta_{\infty}}{\left[\operatorname{Re}_{x}(\alpha+1)\right]^{1 / 2}}=\frac{\delta}{x} \\
& v=-\frac{\partial \Psi}{\partial x}=-\frac{v}{x} \sqrt{\frac{\alpha+1}{2} \frac{C x^{\alpha+1}}{v}}\left(f+\frac{\alpha-1}{\alpha+1} \eta f^{\prime}\right) \\
& \Psi=\left(\frac{2 \nu C x^{\alpha+1}}{\alpha+1}\right)^{\frac{1}{2}} f(\eta)
\end{aligned}
$$



■ For $-0.1984>\beta$ suction is necessary (proven by Stewartson)

■ Can we prove the same for $\beta>2$ ?

## Exact Solutions?

$$
\begin{aligned}
& f^{\prime \prime}+f f^{\prime \prime}+\left(f^{\prime}\right)^{2}=1 \\
& f^{\prime \prime}+f f^{\prime}=Y \\
& f^{\prime}+\frac{1}{2} f^{2}=\frac{1}{2} Y^{2}+2 a \\
& Y=\eta+c ; c=\sqrt{\left(f_{0}\right)^{2}-4 a}
\end{aligned}
$$

- For $a=1 / 2$ solution becomes exponential ("quickest") and thus:

$$
\begin{aligned}
& f(Y)=Y+\frac{2 \exp \left(-\frac{1}{2} Y^{2}\right)}{k+\int_{Y} \exp \left(-\frac{1}{2} S^{2}\right) d S} \\
& k=\left(c+\sqrt{c^{2}+2}\right) \cdot \exp \left(-\frac{1}{2} c^{2}\right)
\end{aligned}
$$

## And the discrete phase?

1. For "perfect convection":

$$
\begin{aligned}
& u \frac{\partial Q}{\partial x}+v \frac{\partial Q}{\partial y}+Q\left[\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right]=0 \\
& Q=q(\eta) \cdot x^{\delta} \quad(\text { the equivalent of } f \text { ' } \\
& \Rightarrow q=C_{1} \cdot f^{\frac{2 \delta}{\alpha+1}}
\end{aligned}
$$

## Concentration contours



If $\alpha<-1$ then $C_{1}=C_{2} \cdot i^{\frac{2 \delta}{\alpha+1}} \quad q=C_{1}^{\frac{2 \delta}{\alpha+1}}$
■ Two bifurcations: $\delta=0 ; \alpha=-1$

■ Delta bifurcates at a physically-relevant point

■ But what's so special about -1?


## How about evaporation?

- Mass conservation of liquid in the spray

$$
\begin{gathered}
u \frac{\partial \tilde{Q}}{\partial x}+v \frac{\partial \tilde{Q}}{\partial y}=-\tilde{E} \tilde{Q} \\
\tilde{Q}=x^{\delta} Q(\eta) \quad \widetilde{E}=x^{\alpha-1} E \\
\frac{2}{\alpha+1}\left(f^{\prime} \delta+E\right) Q-f Q^{\prime}=0
\end{gathered}
$$

- And for $a=-1 / 3$ we may arrive at:

$$
Q=Q_{v}\left(\frac{f}{f_{v}}\right)^{3 \delta}\left(\frac{c}{\eta_{v}+c}\right)^{3 E}
$$

## To conclude

■ Imaginary values may extend the application of similarity solutions

- A closed analytical solution is presented for a particular value of $\beta$
- Weakness of method: limited by necessary assumptions, more stern as equation becomes more complex
■ Don't count the post office out!!!
"If you do not want Cabinet to spend too long discussing something, make it last on the agenda before lunch"

> -- "Yes, minister"

