

3rd Hand Smoking: Heterogeneous Oxidation of Nicotine and Secondary Aerosol Formation in the Indoor Environment

Lauren Petrick and Yael Dubowski

Funding:

The United States-Israel Binational Sciences Foundation The German-Israeli Foundation

IAAR, 2010

Indoor pollutants dynamics

Tobacco smoke in the indoor environment

So, is O₃-cleaning a good solution?

- 1) What material will nicotine preferably sorb to?
- 2) what are the effects of AER, RH, and substrate type on surface nicotine loss ?

- 3) Effects of RH?
- 4) Product identification
- 5) SOA formation

Flow-through sorption setting

Nicotine sorption

- Although nylon and polyester have only 75% and 25% less surface area than cotton nicotine level on these surface was much lower.
- → Surface morphology is not the only factor affecting sorption.

RH Effect

Film type	Relative Humidity*	AER (h ⁻¹)	Rate (min ⁻¹)		
Desorption (k _d)					
Cellulose	High	15	0.060 ± 0.007		
Cellulose	Low	15	0.050 ± 0.004		
Cellulose	Low	3	0.031 ±0.002		
No cellulose	Low	15	0.118 ± 0.013		
Observed Oxidation** (k _{obs})					
Cellulose	High	15	0.089 ± 0.006		
Cellulose	Low	15	0.085 ± 0.014		
Reaction (k _r)					
Cellulose	High	15	0.029 ± 0.009		
Cellulose	Low	15	0.035 ± 0.015		

 $k_{obs} = k_d + k_{rxn}$

* High: > 75% RH; Low: < 10% RH ** $[O_3] = 6 \pm 0.3 \times 10^{15}$ molecules/cm³

Off-line Experiments: cotton doped with nicotine

Identified surface oxidation products

→ Mutagen/carcinogen/teratogen potential

Conclusions:

- 1) Sorption, desorption, parameter effects:
 - Nicotine preferably sorbs to high-polarity materials.
 - Nicotine sorption is affected by RH, facilitating or hindering sorption depending on polarity of material
 - Nicotine desorption and oxidation rates are affected by RH, AER, and substrate

2) Rate constants at $[O_3] = 40$ ppb:

Method	k ₁ * (min ⁻¹)	~t _{1/2}	RH Effect
L-H mech.	7.4 × 10 ⁻⁵	6d	Slightly hindered
Linear ext.	2.0 × 10 ⁻³	12h	$k_1^* = 8.0 \times 10^{-4}$
Gas phase†	5.4 × 10 ⁻⁴	1d	No meas reaction

† Destaillats et al. ES&T 2006

→ Ozonation of nicotine sorbed to cotton had similar kinetics at high $[O_3]$, but not measurable at $[O_3] = 55$ ppb

3) SOA formation at $[O_3] = 55$ ppb:

- SOA yield
 Dry~30%.
 Ambient RH ~ 5%
 No SOA detected from reaction of nicotine sorbed to cotton
- Homogenous or heterogeneous reaction?

 AER >> $k_1^*_{(gas)}$ (Tuazon, et al. 1994)
 - 2) Back of the envelope calculations:

 2×10^{-5} ng cm⁻³ of gas phase nicotine reacted 24-7 × 10⁻⁴ ng cm⁻³ of total particle mass formed

→heterogeneous

So, is O₃-cleaning a good solution?

4)

Formation of SOA and oxidation products:

Myosmine \rightarrow confirmed mutagenic effects

Cotinine→ potenital mutagenicity and teratogenicity

Thank You

For your attention

And to Hugo Destaillats, Irena Zouev, Sara Sabach and Hodayah Hadar-Abuhatzira for their help

Questions?

Lauren.petrick@gmail.com